
Zero Trust
Lakehouse

Kyle Bader
Senior Technical Staff Member
Principal Portfolio Architect
Ceph Offerings at IBM

Ceph Day Silicon Valley
March 25, 2024

Core challenge for data lakehouse

1. Database-level access semantics (what users intuitively expect)
2. Storage-level enforcement (what zero-trust requires)
3. While maintaining direct paths (what performance and scalability demands)

A strategy that incorporates a technical catalog into our product helps us move up
the value chain and keep moving up.

We also want to push storage-level enforcement to be more granular, instead of
stopping at table level access control we could introduce row and column level
security, all while pushing work further down the direct path to maximize
performance and efficiency.

Access
Control

Secure and govern: Namespace scoped secrets

ns blue ns red

Buckets have 1:1
relationship with
namespaces,
dataset per bucket.

Secure and govern: Namespace scoped secrets

ns blue ns purple ns red

Highlights the limitations of
ObjectBucketClaim for
Lakehouse workflows.

stagingraw

Secure and govern: Engine policy enforcement

ns purple

Viable for SQL only engines
with common policy
enforcement logic.

gold

PEP

Secure and govern: Engine policy enforcement

ns purple

Unsuitable for Spark
applications that have
direct access to storage,
bypassing policy.

stagingraw

PEP

Secure and govern: Engine policy enforcement

ns purple

Unsuitable for Spark
applications that have
direct access to storage,
bypassing policy.

stagingraw

PEP

PEP, ie. Proxy – Scalability bottleneck

Technical
Catalogs

Table data service

Proof of concept Terraform to:

• Deploy Polaris
• Create and manage service dependencies on Ceph resources (S3, IAM)
• Create and manage Polaris resources

Could be productized as a Polaris operator delivered by IBM Fusion.
Differentiates IBM offerings from community Ceph.

Strong competitive counter to AWS Lake Formation

https://github.com/mmgaggle/polaris-ceph-demo/blob/main/ceph-resources.tf

https://github.com/mmgaggle/polaris-ceph-demo/blob/main/ceph-resources.tf

raw staging gold

catalog

ns purple

Polaris
Catalog

Polaris vends temporary
session tokens restricting
storage access based on
catalog policy.

Table level access control

Role policy

Scoped
Session
policies

Secure and govern: Catalog credential vending

namespace 1a namespace 1b

namespace 1 namespace 2 namespace 3

namespace 3a

namespace 3aa namespace 1ab

table1 table2 table3 table4 table5

Secure and govern: Namespaces

Catalog 1 Catalog 2 Catalog N

Polaris User

Principals

Principal Roles

Catalog
Roles

Bronze Zone
Catalog

Silver Zone
Catalog

Gold Zone
Catalog

Catalog
Admin

Catalog
Contributor

Data
Admin

Catalog
Reader

Data
Admin

Data
Engineer

Data
Scientist

Bob

Streaming
Data Loader

Spark ETL
User

Presto
User

Mark

Service
Admin

Principal
(hidden)

Alice

Catalogs

Secure and govern: RBAC example

 Table optimization

Catalog unlocks background update services such as

• Table compaction
• Combine small files into fewer larger ones
• Merging delete files with data files generated by Iceberg merge-on-read
• Clustering tables by z-order
• Vector index regeneration

• Snapshot management
• Prune old table snapshots

• Unreferenced file removal
• Expire objects not referenced in any table snapshots

Table Maintenance Integration with Polaris

https://docs.google.com/document/d/1Pd_mzZcfvnUvcH98IbwsIYf4eryet1lQDfclKYx-t-M/edit?usp=sharing

s3://foo/ # LanceDB root location
 ├── bar/ # Table 'bar’
 │ ├── data/ # Column data files
 │ ├── indices/ # Index files
 │ ├── _latest.manifest # Points to current version
 │ └── schema.arrow # Table schema
 ├── baz/ # Table 'baz’
 │ ├── data/
 │ ├── indices/
 │ ├── _latest.manifest
 │ └── schema.arrow

foo/ # Iceberg table ‘foo’
 ├── metadata/ # Contains all table metadata files
 │ ├── version-hint.text # Points to current metadata version
 │ └── v[version].metadata.json # Metadata file for each version
 ├── data/ # Contains data files
 │ └── [partition_spec]/ # Optional partition directories
 │ └── [file_group]/ # Groups of data files
 │ └── [data_file].parquet # Data files (usually Parquet)
 └── snapshots/ # Contains snapshot metadata
 └── snap-[id].avro # Snapshot metadata files

s3-tags are applied to these objects
to map data files to tables and namespaces,
and to use as conditions in session policies

Polaris like access controls could easily be
extended to lance tables with a wrapper or
native support for s3-tags and client side
support for token vendors

Secure and govern: RBAC for other tables?

Delta (and other format) Table Support in Polaris

https://iceberg.apache.org/docs/latest/aws/
https://docs.google.com/document/d/1H2StuZ26LroibuQni3IJlErlKgrV9fEvYLHHqN7HWfE/edit?usp=sharing

Extra

SQL Query

SELECT q,
 SUM(y) AS z
FROM ‘s3://..
WHERE x > 99
GROUP BY g
ORDER by z

Substrait Plan

Relations:…
 read: ‘s3://…”
 project: …
 filter:…
 aggregate:….
 sort:….

Substrait Plan

Relations:…
 read: ‘s3://…”
 project: …
 filter:…
 aggregate:….
 sort:….

Substrait Plans

Relations:…
 read: ‘s3://…”
 project: …
 filter:…

Relations:…
 read: result
 aggregate:….
 sort:….

Pushdown Remainder

Substrait Plan

Relations:…
 read: ‘s3://…”
 project: …
 filter:…

Arrow Data

g y

abc 1.1

def 2.2

… …

Arrow Data

g y

abc 1.1

def 2.2

… …

Arrow Data

g y

abc 1.1

def 2.2

… …

C
li

e
n

t
E

n
g

in
e

Files

Arrow Data

g y

abc 1.1

def 2.2

… …

Volley
Read API

Read API for structured records

SQL Query

SELECT q,
 SUM(y) AS z
FROM ‘s3://..
WHERE x > 99
GROUP BY g
ORDER by z

Substrait Plan

Relations:…
 read: ‘s3://…”
 project: …
 filter:…
 aggregate:….
 sort:….

Substrait Plan

Relations:…
 read: ‘s3://…”
 project: …
 filter:…
 aggregate:….
 sort:….

Substrait Plans

Relations:…
 read: ‘s3://…”
 project: …
 filter:…

Relations:…
 read: result
 aggregate:….
 sort:….

Pushdown Remainder

Substrait Plan

Relations:…
 read: ‘s3://…”
 project: …
 filter:…

Arrow Data

g y

abc 1.1

def 2.2

… …

Arrow Data

g y

abc 1.1

def 2.2

… …

Arrow Data

g y

abc 1.1

def 2.2

… …

C
li

e
n

t
E

n
g

in
e

Files

Arrow Data

g y

abc 1.1

def 2.2

… …

Volley
Read API

Catalog

Policy Store

Column / Row Level Security

Read API for structured records: secure and govern

 Directory tables

Add notion of Volumes and Directory tables to organize unstructured data

• Secure and govern unstructured like structured data
• Structured information about unstructured data
• AI use cases

• Features (training), vectors (RAG), and full-text search through external indexes
• FAISS or DiskANN for vector

• Bucket notifications to pub/sub for ISV software, serverless (Knative), AI extractors

Unstructured Data Support in Polaris

https://docs.google.com/document/d/1ofljkrtiXRWc-v6hfkg_laKlYltepTPX7zsg44Tb-BY/edit?usp=sharing

	Slide 1: Zero Trust Lakehouse
	Slide 2: Core challenge for data lakehouse
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Table data service
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Table optimization
	Slide 15
	Slide 16
	Slide 18
	Slide 19
	Slide 20: Directory tables

